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Abstract. We consider a one-dimensional solid-on-solid growth model in which the nearest-
neighbour height differences are restricted to take the values±1. Deposition occurs at local
minima with probabilityf , while diffusion moves of single adatoms within a layer occur with
probability 1−f . Interlayer transport and detachment from step edges is suppressed. Forf → 1
the stationary distribution of the model is known, hence the growth-induced surface current can
be computed analytically for small diffusion rates. In the opposite, diffusion-dominated limit,
f → 0, a description in terms of step flow is possible for slopes larger than a critical slopeuc.
For smaller slopes the surface phase separates into regions of slope±uc. The stationary domain
size diverges forf → 0 asf−ν , whereν ≈ 0.5. We suggest that the large-scale behaviour in
this limit can be described by the noisy Kuramoto–Sivashinsky equation in its noise-dominated
regime.

1. Introduction

Simple lattice models have played a central role in the development of an improved
understanding of far-from-equilibrium crystal growth during the past decade [1–3]. Of
particular importance are models which admit at least partial analytic solutions, such as the
computation of the exact crystal growth rate in the thermodynamic limit. Several examples
for two-and three-dimensional crystals have been constructed by Gates and Westcott (GW)
[4, 5]. In these models the kinetic rates for evaporation and condensation of single atoms
are prescribed in terms of the local bonding environment, but no mass transport on the
surface is allowed for.

In many crystal-growth processes of current interest mass transport through surface
diffusion is an essential ingredient, since it provides the efficient microscopic smoothing
mechanism required for the growth of atomically flat layers. As was first pointed out by
Villain [6], the introduction of surface diffusion induces a wealth of qualitatively novel
phenomena, the most prominent of which is a generic growth instability associated with
step-edge barriers [7] and corresponding ‘uphill’ mass currents¶ [8].

It would therefore be most desirable to devise a model for growth with surface
diffusion which retains the simple analytic structure of the evaporation–condensation models

§ Corresponding author. E-mail address: jkrug@theo-phys.uni-essen.de
‖ On leave from: LPT-ICAC, Faculté des Sciences, Rabat (Morocco) and IMSP, Université Nationale du Benin,
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¶ For a review see [3, section 5].
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introduced by GW [4] and others [9–11]. So far this has proved to be rather difficult. The
only known solvable model for growth with surface diffusion refers to a one-dimensional
step train in the absence of interlayer transport and in the limit of infinite diffusion length
[12], for which the growth-induced surface current [8] can be derived exactly [13, 14].

In a related effort, we have recently extended the GW model to include both in-layer
and interlayer surface diffusion [15]. Due to the restriction on the height differences (see
section 2) the state space of the model is finite for finite system sizes, and hence the stationary
master equation can be solved exactly for small samples. Nevertheless the asymptotic large-
scale behaviour is difficult to ascertain from the finite-size results.

In the present paper we simplify the model introduced in [15], reducing the dependence
on kinetic barriers and temperature to a single parameterf related to the ratio of diffusion
(D) and deposition (F ) rates as

f = (1+D/F)−1. (1)

We show, through a combination of simulations and analytic arguments, how exact results
for the large-scale behaviour of this model can be obtained both in the deposition dominated
(f → 1) and the diffusion dominated (f → 0) regimes. The morphological instability
typical for growth with surface diffusion is found to persist; however, its character is
qualitatively altered due to the fact that the relaxation processes in the model do not conserve
the volume of the crystal [16]. Instead of showing domain coarsening [17], the surface phase
separates into domains of afinite lateral extentξ(f ), which diverges forf → 0 as

ξ(f ) ∼ f −ν (2)

with an exponentν ≈ 1
2. We propose a continuum description in terms of a noisy Kuramoto–

Sivashinsky equation [18, 19], which suggests that in factν = 1
2 exactly.

The model of interest is defined in the next section. In section 3 we exploit the
knowledge of the trivial stationary distribution of thef = 1 model to obtain approximate
expressions for the slope-dependent surface current [8] and the adatom density. Section 4
applies previous results for step-flow growth [12–14] to describe tilted surfaces in the regime
of small f , and a finite-size scaling analysis of the adatom density is used to extract the
domain-size exponentν in (2). In section 5 our results are put into context and a continuum
equation for the model is proposed.

2. Definition of the model

Like the one-dimensional GW model [4], our model can be thought to describe the growing
edge of a two-dimensional hexagonal crystal (figure 1). With a suitable choice of units, the
one-dimensional surface (shown as a zig-zag line in figure 1) is represented by its integer
height hi above the substrate sitei, i = 1, . . . , L. Permitted configurations satisfy the
‘single-step’ constraint [4, 9–11]

σi ≡ hi+1− hi = ±1 (3)

and an average surface tilt,

u ≡ 〈σi〉 − 16 u 6 1 (4)

is fixed through helical boundary conditions,hi+L = hi + uL.
In an elementary simulation step a lattice sitei is chosen at random, and adeposition

attempt is made with probabilityf . Such an attempt is successful only if the chosen site
is a local minimum, in the sense that

(σi−1, σi) = (−1, 1) (deposition site). (5)
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Figure 1. Schematic of the growth model used in this work. The full zig-zag line represents the
surface positionhi . Atoms have been deposited at positions A, B, C and F. Prior to deposition
a growth site (local minimum) existed at these positions, which is indicated by broken lines.
Atoms A, C and F are mobile, but only atom C can move in both directions. Atoms A and
F give (opposite) contributions to the growth-induced current. Atoms B, D and E are bonded
laterally and therefore cannot move.

If the condition (5) is satisfied, the height at sitei is increased by two units,hi → hi + 2;
otherwise the move is discarded, and a new site is chosen.

With probability 1− f a diffusion attemptis made instead. This move requires the
presence of an isolated adatom at sitei, that is, a local slope configuration (see figure 1)

(σi−2, σi−1, σi, σi+1) = (1, 1,−1,−1) (adatom). (6)

If such an adatom is found, a decision is made to move it left or right with equal probability.
The diffusion move is successful only if, in addition to the condition (6), the neighbouring
site which has been chosen is a local minimum and thus can accommodate the adatom. For
left (right) moves this impliesσi−3 = −1 (σi+2 = 1). If one of these additional conditions
is violated, the adatom sits at a step edge and therefore is free to move only away from the
step (figure 1). In this sense the model includes infinitely strong step-edge barriers [7]; to
introduce interlayer transport, diffusion moves to next-nearest neighbour sites would have to
be allowed [15]. Related models for surface diffusion without growth have been considered
previously by Ŕacz and coworkers [20].

To make contact with the parameters in more realistic growth models, consider
a perfectly ‘flat’ surface at zero tilt, corresponding to a staggered slope configuration
σi = (−1)i . On such a surface an isolated adatom diffuses with diffusion rateD = (1−f )/2,
while new atoms are deposited at rateF = f/2 per site (every second site is a deposition
site (5)). ThusD/F = (1− f )/f and (1) follows.

We should emphasize that the present model (as well as the one considered in [15])
doesnot belong to the class of ‘conserved’ growth models [3] of ‘ideal’ molecular beam
epitaxy [16], in which all deposited atoms remain at the surface. The condition (5) on
eligible growth sites leads, in effect, to a sticking coefficient which is different from unity
[21] and introduces a coupling between the surface morphology and the average growth
rate; in particular the growth rate depends on the tiltu for any value off (see below). It is
possible to construct conserved growth models with a ‘single step’ restriction, but only at
the expense of allowing mass transport of unlimited range even in the absence of diffusion.
If a particle lands in a large region with no eligible growth sites (e.g. an extended steep
hillside), it has to be moved to the edge of that region to be incorporated into the crystal
[22, 23]. This introduces long-ranged slope correlations and spoils the simple structure of
the stationary distribution [11].
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3. Growth-dominated regime: f → 1

In the absence of diffusion (f = 1) the stationary state of the infinite system is obtained [9]
by choosing the slope variables independently at different sites, with probabilities(1+u)/2
for a step up (σi = 1) and(1− u)/2 for a step down (σi = −1). The growth rate is then
[4, 11, 25]

G(u) = f

2
(1− u2) (7)

and the probability of finding an adatom configuration (6) is given by

ρD(u) = (1− u2)2

16
. (8)

Since not all adatoms are actually mobile, a more useful measure of diffusional surface
transport is the number of successful diffusion moves per unit time, which is computed, in
an obvious notation, as

nD(u) = 1− f
2

[Prob(−++−−−)+ Prob(+++−−+)+ 2Prob(−++−−+)]

= 1− f
2

ρD(u). (9)

In numerical simulations, the growth-induced surface currentJ (u) is obtained [8] by
recording the difference between left- and right-going diffusion jumps on a tilted surface.
For f close to 1 we may use the uncorrelated stationary state to compute the probabilities
of various local environments for the diffusing adatom, and hence the net current. The only
local configurations which contribute to the current are those where the adatom is located
at a descending step edge (figure 1); in all other cases the probabilities of moving left or
right are equal. Thus we have

J (u) = 1
2(1− f )[Prob(+++−−+)− Prob(−++−−−)]

= unD(u) = (1− f )
32

u(1− u2)2 (10)

where the prefactor(1− f )/2 derives from the fact that diffusion moves are attempted
with probability 1− f , and the (allowed) uphill direction is chosen with probability1

2. The
current is an odd function which vanishes linearly atu = 0 and quadratically atu = ±1,
with a maximum atu = 1/

√
5. The simulation data shown in figure 2 confirm that the

form of the current is well described by (10) forf close to unity. Moreover, the relation
J (u)/nD(u) = u continues to hold in a range of values off even whenJ andnD are no
longer well described by theirf → 1 expressions.

While the expressions given above hold in the thermodynamic limitL → ∞, it is a
matter of straightforward combinatorics to extend them to finiteL. Since quantities like the
current (10) probe spatial correlations over extended regions, finite-size effects can be quite
prominent.

4. Diffusion-dominated regime: f → 0

4.1. Growth rate

Figure 3 illustrates the change in the tilt-dependent growth rateG(u) as a function off .
For f close to unity one recognizes the familiar parabolic shape of equation (7). Upon
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Figure 2. The main figure shows the growth-induced current, normalized by 1−f , for f = 0.9
(full squares) compared with the analytic prediction (10) in the limitf → 1 (full curve). The
inset shows numerical data forf = 0.9 (full squares) andf = 0.5 (full triangles) to illustrate
the relationJ/nD ≈ u. The numerical data were obtained for a system sizeL = 400, and
averages were taken over 9× 106 (5× 106) monolayers forf = 0.9 (f = 0.5).

decreasingf the scaled growth rate is seen to approach apiecewise linearfunction,

g(u) ≡ lim
f→0

f −1G(u) =
{

1− |u| : |u| > uc

1− uc : |u| 6 uc.
(11)

The critical slopeuc can be estimated rather accurately from a plot ofG(0)/f versusf
(inset of figure 3), which yieldsuc ≈ 0.455. The deviations from the piecewise linear
form visible close tou = uc for f 6 0.001 are presumably finite-size effects. Simulations
of smaller systems withf = 0.01 showed similar features, which, however, disappeared
when the system size was increased. As is detailed in section 4.3, finite-size effects become
important when the stationary domain sizeξ(f ) is comparable with the system size. For
f = 0.001, the expression (23) yieldsξ ≈ 150, while the system size used in the simulations
shown here was onlyL = 100.

Our interpretation of this behaviour is in terms of a transition between two growth
regimes occurring atu = uc. For |u| > uc the surface has the shape of astep train
(figure 4). In the limitf → 0 this shape is maintained during growth, because each freshly
landed particle has enough time to reach a step edge and be absorbed there before the next
particle arrives; the corresponding growth mode is referred to asstep flow. The step train
is decomposed into terraces separating single-height or multiple-height steps. Due to the
geometry of the model, a terrace consisting ofk deposition sites occupies 2k + 1 sites of
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Figure 3. Growth rate, normalized by the deposition ratef , as a function of tilt. The full
squares show data forf = 0.9, compared with thef → 1 prediction (7) (broken line). Open
squares, open triangles and crosses are forf = 10−2, f = 10−3 andf = 5×10−4, respectively.
The full curve illustrates the piecewise linear behaviour of equation (11). The data forf = 0.9
were obtained by growing 9×106 monolayers on a substrate of sizeL = 400. For small values
of f the system size used wasL = 100, andf ×108 monolayers were grown for each value of
the tilt. The inset shows the normalized growth rate at zero tilt as a function off . The broken
line represents our estimateG(0) ≈ 0.545f for f → 0.

Figure 4. The figure shows a segment of a positively tilted step train. Freshly landed atoms
(black) can move uphill (+) or downhill (−) except when they sit at a cliff edge.

the substrate lattice. Consequently the average terrace length for a surface with tiltu > 0
is

` ≡ 〈k〉 = 1− u
2u

. (12)

The density of deposition sites is thenu` = 1
2(1− u), and since each deposition event

increases the height by two units, the growth rate isf (1− u) in accordance with (11).
In the simple square-lattice solid-on-solid model with no interlayer transport the step-

flow growth mode has been shown to be unstable due to the nucleation of steep ‘towers’
of single atoms stacked on top of each other [12]. In the present model the restriction
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Figure 5. Surface profile for a substrate of zero tilt and sizeL = 1000, onto which 27 250
monolayers have been deposited at a deposition ratef = 5× 10−4. The heavy bar illustrates
the domain sizeξ(f ) calculated from equation (23), while the broken line indicates the critical
slopeuc ≈ 0.455.

on the height differences appears to stabilize the step train for slopes exceedinguc. For
|u| < uc, the fact that the growth rate becomes independent of tilt indicates that the surface
phase separatesinto domains of slopes±uc, the fraction of each type of domain being
determined by the average slopeu. This view is supported by inspection of actual surface
profiles (figure 5).

4.2. Surface current

The rescaled surface current also attains a well-defined limiting shape

j (u) = lim
f→0

f −1J (u) (13)

for small f (figure 6). To compute the functionj (u) in the step-flow regime, we consider
an atom deposited onto a terrace ofk > 0 deposition sites. Letx = 1, . . . , k denote the
deposition site where the atom has landed, withx = k being located next to the ascending
step (figure 4). The atom will then have to perform a net number ofk − x uphill jumps
before being incorporated into the crystal. The average contribution of such an atom to the
current is therefore

jk = 1

k

k∑
x=1

k − x = k − 1

2
. (14)
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Figure 6. The growth-induced current, normalized by the deposition ratef , as a function of
tilt. Parameter values and system sizes associated with the different symbols are the same as in
figure 3. The full curve shows the analytic prediction (17) for the step-flow regime, while the
broken curve is the linear interpolation (18) of the phase-separated regime. Some representative
statistical error bars have been added to illustrate the strong fluctuations near the critical slope.

This has to be averaged with respect to the probabilityP(k) that a deposited atom lands on
a terrace of lengthk. The terrace lengths for this model can be shown to have a Poisson
distribution† [12]. The fact that longer terraces are more likely to capture an atom‡ implies
that this distribution has to be multiplied by the terrace lengthk. The properly normalized
expression is therefore

P(k) = k

`

e−``k

k!
(15)

and the average migration distance of a deposited atom is obtained as
∞∑
k=2

jkP (k) = 1

2`

∞∑
k=2

e−``k

(k − 2)!
= `

2
. (16)

To arrive at the current functionj (u) we have to take into account that only a fraction
1
2(1− u) of deposition attempts are successful (see section 4.1). The final result therefore
reads (using equation (12))

j (u) = 1

4
(1− u)` = 1

8

(1− u)2
u

(17)

† The different lattice geometry of the present model does not affect the argument given in [12].
‡ In [14] this effect was overlooked, and it was erroneously concluded that the numerically measured surface
current differs from the current function which enters the coarse-grained continuum description of the model.
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in excellent agreement with the numerical data in figure 6. Similar expressions have been
obtained by Amar and Family [24] for a related model.

In the phase-separated regime|u| < uc one expects the current to be a linear function
of the slope. At an average slopeu, a fraction 1

2(1+ u/uc) of the surface has slopeuc,
carrying a corresponding currentj (uc), and a fraction1

2(1− u/uc) has slope−uc with the
current−j (uc). The total current is then

j (u) = (u/uc)j (uc). (18)

The simulation data are consistent with this picture at least up tou ≈ 0.3. Closer to the
transition the current shows large fluctuations, and presumably also strong finite-size effects
(compare with the discussion in section 4.1).

4.3. Adatom density

In this section we consider the frequency of successful diffusion movesnD, which is a
measure of the adatom density (see section 3). As can be seen in the inset of figure 7,
in the step-flow regimenD(u) shows the same kind of scaling as the growth rate and the
surface current, in the sense thatnD/f has a well-defined limit forf → 0. This is to be
expected, since in the step-flow regimenD can be written, in analogy to (16), in the form

lim
f→0

nD/f =
∞∑
k=2

nkP (k) (19)

wherenk is the average number of diffusion moves an atom landed on a terrace of sizek

performs before incorporating at the step edge. Since clearlynk > jk always, it follows
that limf→0 nD(u)/f > j (u) (see figure 7).

However, the behaviour ofnD in the phase-separated regime|u| < uc is dramatically
different from the quantitiesG and J considered in the previous two sections. With
decreasing tilt, the adatom density rises sharply aroundu = uc and saturates to a plateau
value which isnot proportional tof (figure 7). This is due to the appearance oftop terraces
at the local maxima of the surface, where two vicinal facets of tilt±uc meet. The adatom
density on the top terraces is much larger than on the vicinal pieces [26], because an atom
that is deposited there remains trapped but mobile until a second atom lands with which
an island (and therefore a new top terrace) can be formed. It follows that the probability
of finding a mobile adatom on a top terrace converges to some finite number forf → 0.
The number of top terraces per unit length is proportional to the inverse of the domain size
ξ(f ) of the faceted pieces. Anticipating the power-law divergence (2) of the domain size
for f → 0, it follows that the contribution of the top terraces to the adatom density is of
the orderf ν and exceeds the contribution∼ f from the vicinal pieces providedν < 1.

To quantify this picture, we have carried out a finite-size scaling analysis of the stationary
value ofnD at zero tilt (u = 0) as a function off andL. ForL� ξ the adatom density is
independent ofL and proportional tof ν , while for L � ξ there are only two facets, with
one top terrace between them, and hencenD ∼ 1/L independent off . The two regimes
are connected by the scaling form

nD(f, L) = L−1φ(f νL) (20)

with φ(s → 0) = constant,φ(s → ∞) ∼ s. The exponentν was first estimated using
the data for the largest system sizeL = 400 (inset of figure 8), yieldingν ≈ 0.54. Then
it was verified that this choice also gives an optimal data collapse for all our simulation
results, which cover system sizes 206 L 6 400 and deposition rates 5×10−4 6 f 6 10−2.
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Figure 7. Density of mobile adatoms, normalized by the deposition rate, as a function of tilt.
Parameter values and system sizes associated with the different symbols are the same as in
figure 3. The inset shows an enlargement of the step-flow regime, to illustrate the date collapse
for different f . The broken curve is the expression (17) for the growth-induced current.

Reasonable data collapse was obtained also forν = 0.5 andν = 0.6. Thus our subjective
best estimate ofν is

ν = 0.54± 0.05 (21)

which does not rule out the simple valueν = 1
2.

From figure 8 one reads off that the limits of the scaling functionφ are approximately
given by

lim
s→0

φ(s) ≈ 0.20 lim
s→∞φ(s)/s ≈ 0.056. (22)

The first estimate implies that the probability of finding a mobile adatom on a top terrace at
any given time is about15. Locating the crossing points∗ between the two asymptotics in
equation (22) (figure 8) yieldss∗ ≈ 3.6, and hence our numerical estimate for the domain
size is

ξ(f ) ≈ 3.6× f −0.54. (23)

This length scale is indicated as a solid bar in figure 6.

5. Discussion and conclusions

To put our results into perspective, we first briefly review the known theoretical scenarios
for unstable epitaxial growth. For models with simple cubic crystal structures and complete



Phase separation in a single-step growth model 7749

Figure 8. The main figure illustrates the finite-size scaling form (20) for the stationary density of
mobile adatoms at zero tilt. The figure shows the optimal data collapse, which was achieved for
ν = 0.54. The crosses are simulation data obtained for a variety of system sizes (206 L 6 400)
and deposition rates (5×10−4 6 f 6 10−2). The number of deposited monolayers ranged from
at least 2.5× 104 for L = 20 to 2× 105 for L = 400. The broken lines indicate the limiting
behaviours of the scaling functionφ(s) (equation (22)). The inset shows the data forL = 400,
which were used to estimateν; the broken line has slopeν = 0.54.

suppression of interlayer transport it is easy to show [12, 13] that the late-stage morphology
is completely dominated by the islands formed during the growth in the first layer. The
typical feature sizeξ is therefore independent of growth time (or coverage), and coincides
with the diffusion length̀ D of the submonolayer regime. Rate equation theories [27] show
that `D has a power law dependence on the growth parameters,

`D ∼ (D/F)γ ∼ f −γ (24)

whereγ = 1
4 for the case of relevance here (one-dimensional growth with immobile stable

dimers).
On the other hand, if some interlayer transport is permitted, the feature size typically

increases indefinitely as a power law in time or coverage [17]. The behaviour observed in
our model is intermediate between the two cases: a stationary feature size is reached, but,
sinceν ≈ 1

2 > γ = 1
4, it is much larger than the submonolayer island size (24). This implies

that a certain amount ofcoarseningmust take place between the growth of the first layer
and the late-stage regime in whichξ saturates. Conversely, since in any case the feature
size can only increase with coverage, the argument provides a lower boundν > γ = 1

4 on
ν. A similar scenario was found by Politi and Villain [26] in a model withweak step-edge
barriers, where the second length scale fixing the stationary feature size is provided by



7750 J Krug and F Hontinfinde

barrier strength.
We believe that in our model the stationary domain size originates from the non-

conserved character of the dynamics (see section 2), which distinguishes it qualitatively
from previous models studied in this context [17, 26]. This issue is most clearly addressed
in a continuum language. The standard continuum equation for unstable conserved growth
reads [17]

∂h

∂t
+∇ · (J (∇h)+ Jeq) = η(x, t) (25)

whereh(x, t) denotes the position of the interface relative to the average,η(x, t) is shot
noise,J is the growth-induced current [8] andJeq describes smoothing effects. The leading
linear terms in a gradient expansion of the current contributions are

J ≈ −σ∇h Jeq≈ κ∇(∇2h) (26)

whereκ > 0 andσ < 0 for unstable growth. The balance between the two terms in (26)
then defines a length scale`i associated with the initial stage of the instability,

`i ∼
√
κ/|σ |. (27)

In contrast, the continuum limit of the standard single-step model (our model with
f = 1) is well known [9, 10, 25] to be the Kardar–Parisi–Zhang (KPZ) equation [1–3, 28]

∂h

∂t
= σ∇2h+ λ

2
(∇h)2+ η (28)

where [25]λ = 1 andσ > 0. The KPZ nonlinearity(λ/2)(∇h)2 is not allowed in the
conserved growth equation (25), but is expected to be present generically in our non-
conserved model. The observed phase-separation behaviour forf → 0 indicates that in
the diffusion-dominated regimeσ becomes negative. Combining equations (25), (26) and
(28) we therefore propose that the appropriate continuum equation for smallf is thenoisy
Kuramoto–Sivashinsky equation[18, 19]

∂h

∂t
= −|σ |∇2h− κ(∇2)2h+ λ

2
(∇h)2+ η. (29)

This equation produces a fluctuating morphology with a typical feature size fixed at`i . The
fluctuations are predominantly of chaotic origin only if the external noise strength is small
compared with|σ |7/2 [3, 19].

To obtain a prediction for the feature sizeξ(f ) we first recall that the growth-induced
current for smallf is of the formJ (u) = fj (u) (equation (13)), henceσ = −fj ′(0) and
|σ | ∼ f . A number of processes contribute to the coefficientκ of the smoothening current
Jeq in (26) [29]. In the absence of detachment from step edges, the dominant contribution
is expected to be of the form [26, 29]

κ ∼ F`4
D ∼ Df 1−4γ . (30)

From (27) it follows that

ξ(f ) ∼ `i ∼ f −2γ (31)

or ν = 2γ . Using the one-dimensional valueγ = 1
4 we find ν = 1

2, consistent with the
numerical results of section 4.3. Moreover, since the noise strength is also proportional to
the flux f , and thus much exceeds the chaotic contribution|σ |7/2 ∼ f 7/2, the model lies
in the noise-dominated regime of (29). It is then not surprising that typical configurations
(as in figure 5) bear little resemblance to the cellular structures generated by the noiseless
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Kuramoto–Sivashinsky equation [18, 19]. Further investigations of thedynamicsof the
model are needed to substantiate this picture.

We conclude with a remark concerning the roughness of the growing surface. Forf = 1
the stationary surface width is [25]

W(L) ≡
√
〈(h− 〈h〉)2〉 ≈

√
L/12 (32)

for largeL. In the phase-separated regime the surface is roof-shaped forL < ξ(f ), hence
W ∼ L, which crosses over toL1/2 at L ≈ ξ . Matching the two power laws and using (2)
we conclude that

W(L) ∼
√
ξ(f )L ∼ f −ν/2L1/2 (33)

for f � 1 andL → ∞. Comparison of (32) with (33) very directly demonstrates the
somewhat paradoxical fact that inclusion of surface diffusion in the single-step model
increasesthe growth-induced roughness.

A similar conclusion was reached in our earlier work [15]; however, there the technical
restriction to small system sizes led to a somewhat different manifestation of the instability.
Increasing the temperature, and thus decreasingF/D ∼ f at fixed system size induced a
transition from the ‘rough’ regime whereξ < L, W ∼ L1/2, to the ‘roof-shaped’ regime
ξ > L, W ∼ L. Due to the activated temperature dependence of the surface diffusion
constantD, the transition appeared to be rather sharp.
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